CRISPR Gene-Editing Technology: UK Application Filed, More Official Statements, International Summit
Over the last year, several ad hoc and professional organizations have continued to weigh in on whether the CRISPR/Cas9 gene-editing technology should be subject to any pauses in its adoption as a method of genome alteration or correction (see here). The advent of CRISPR/Cas9 technologies, beginning with the first publication in 2012, has accelerated scientific interest in gene editing because the technique has offered a more efficient approach than previous genome-altering methodologies. Here is an overview of the directions such research can take:
Genome editing has tremendous value as a tool to address fundamental questions of human and non-human animal biology and their similarities and differences. There are at least four categories of basic research involving genome editing technology that can be distinguished: 1) research to understand and improve the technique of genome editing itself; 2) genome editing used as a tool to address fundamental questions of human and nonhuman animal biology; 3) research to generate preliminary development of human somatic applications; and 4) research to inform the plausibility of developing safe human reproductive applications.
However, the CRISPR age is encountering fits and starts. Most controversially, the specter of CRISPR becoming a novel reproductive technology to perform gene editing on a human embryo has raised the most attention and concern. Earlier, this year, two groups of American scientists issued cautionary statements (see earlier post here); the NIH then reiterated its ban on any federal funding of research on gene-editing in embryos. More recently, other international bodies are weighing in. The U.K. Wellcome Trust has now issued a statement:
Research using genome editing tools holds the potential to significantly progress our understanding of many key processes in biology, health and disease and for this reason we believe that responsibly conducted research of this type, which is scientifically and ethically rigorous and in line with current legal and regulatory frameworks, should be allowed to proceed. We will continue to support the use of genome editing in preclinical biomedical research as well as studies that progress and refine these technologies. Within the UK, this research may involve the use of somatic (non-reproductive) or germ cells, including human embryos up to 14 days old - within the confines of the HFE Act 2008 - where appropriately justified and supported by rigorous scientific and ethical review.
Against that backdrop, a U.K. developmental biologist has applied to the Human Fertilisation and Embryology Authority (HFEA), for permission to edit the genome of a human embryo (there is no such agency in the U.S). The goal of the proposed research is to identify what genes in the developing embryo are active in the early post-fertilization stages; the research would use surplus embryos from IVF clinics where permission has been granted for such use. The license may be granted:
The Human Fertilisation and Embryology Authority (HFEA) has yet to review her application, but is expected to grant a licence under existing laws that permit experiments on embryos provided they are destroyed within 14 days. In Britain, research on embryos can only go ahead under a licence from an HFEA panel that deems the experiments to be justified.
In a separate development, The Hinxton Group, an international consortium centered on stem cell issues, published a statement calling for caution in possible reproductive applications, but not a moratorium:
Oversight structures must be in place prior to any attempts to use genome editing in human reproduction. Effective oversight requires the development of appropriate standards for preclinical data (e.g., What are acceptable thresholds for off-target events and mosaicism? What are appropriate methods for determining the impact of off-target events?). Initial attempts should be conducted only in the context of formal clinical research or trials. In addition, the health and well-being of participants, developing fetuses, and pregnancy outcomes should be monitored carefully. The health and well-being of those born should also be monitored in long-term follow-up and research, albeit with a mind toward the burdens this would impose.
Finally, in an event that will likely feature a spectrum of viewpoints, the Chinese Academy of Sciences (CAS) and the Royal Society (the science academy of the U.K.) are joining the U.S. National Academy of Sciences (NAS) to hold a highly anticipated international summit on human gene-editing on December 3, 2015 in Washington, D.C. A preliminary meeting (and webcast) to organize the summit will be held next week on October 5, 2015; details here.
No comments:
Post a Comment