June 27, 2018

National Academies Report on the Risk of Synthetic Biology Capabilities for Use in Bioterrorism

The National Academies of Sciences, Engineering, and Medicine (NAS) has issued a report on assessing biodefense capabilities in view of new biotechnologies that could be used to reactive, alter, or design dangerous microorganisms or toxins. Specifically, the report scrutinizes synthetic biology (an umbrella term for a wide array of techniques available for the purpose of biological design). The report, Biodefense in the Age of Synthetic Biology, is publicly available here. This is an era where public health authorities must think  beyond currently existing microorganisms (viruses, bacteria) and contemplate biological attacks or events resulting from novel biological agents.The U.S. Department of Defense asked the NAS to “develop a strategic framework to guide an assessment of potential security vulnerabilities related to advances in biology and biotechnology, with a particular emphasis on synthetic biology.” 

In its endeavor, the study committee developed a framework to identify the relative level of concern that should attach to particular technological scenarios. In the event of an outbreak from a novel organism, or an attack with a novel toxin, how should public health officials determine the level of risk? The report's framework for assessing concern consists of four factors, along with descriptive elements within each factor. The factors are Usability of the Technology, Usability as a Weapon, Requirements of Actors, and Potential for Mitigation. Looking at these factors more simply, they assess the ease of using a technology, how feasible it is to use it as a weapon, the identification of what actors could achieve certain technical goals (having both knowledge and access to resources), and finally, the existence of measures to counteract a new biological threat. With that framework for guidance, the report ranks certain threats as warranting higher concern than others:

Of the potential capabilities assessed, three currently warrant the most concern: recreating known pathogenic viruses, making existing bacteria more dangerous, and making harmful biochemicals via in situ synthesis. The first two capabilities are of high concern due to usability of the technology. The third capability, which involves using microbes or synthetic pathways to produce harmful biochemicals or toxins to be used against humans, is of high concern because its novelty challenges potential mitigation options.
The report is a timely summary of how current genetic technologies recast and expand biosecurity threats. The framework that the NAS has provided for a methodical evaluation of a new biological organism or biochemical capability will allow public health and national security responders to more quickly determine risk and response during unanticipated events.