July 20, 2014

Cambridge Working Group: Scientists Call For Limiting Experiments on Potentially Pandemic Pathogens

A new coalition of scientists, the Cambridge Working Group (CWG), has emerged with the goal of entering into the debate over whether and how scientific experiments that deliberately create new pathogens should be conducted. This class of experiments aims to understand how mutations introduced into the genome of a known pathogen (e.g., H5N1 influenza virus) alter its properties. One of the goals cited for these experiments is to assist public health officials in identifying the emergence of potentially worrisome (viral) strains, with possibly pandemic potential. However, concerns over the safety of these laboratory experiments have been heightened in view of recent high-profile biosafety lapses in government labs (see here). Some of the scientists in the CWG have been members of the National Science Advisory Board on Biosecurity (NSABB), the federal advisory group that advises on biosecurity issues and dual-use research (NSABB has just announced a reshuffling of personnel, replacing almost half the current roster with new members). The controversy of two years ago, where “gain-of-function” (GOF) experiments with H5N1 influenza virus were conducted and then published has continued as new experiments with what have been called “potential pandemic pathogens (PPP)” continued. The class of PPP could constitute de novo constructed viruses or could also include attempts to recreate previously known and dangerous pathogens. Recently, one of the same labs that had published the H5N1 influenza experiments in 2012 reported that it had created a new influenza virus homologous (similar) to the 1918 influenza virus, which caused a pandemic that killed between 20-50 million people (the CDC had already reconstructed the 1918 virus in 2005). This week, the CWG announced its formation and issued this statement:
Recent incidents involving smallpox, anthrax and bird flu in some of the top US laboratories remind us of the fallibility of even the most secure laboratories, reinforcing the urgent need for a thorough reassessment of biosafety. Such incidents have been accelerating and have been occurring on average over twice a week with regulated pathogens in academic and government labs across the country. An accidental infection with any pathogen is concerning. But accident risks with newly created “potential pandemic pathogens” raise grave new concerns. Laboratory creation of highly transmissible, novel strains of dangerous viruses, especially but not limited to influenza, poses substantially increased risks. An accidental infection in such a setting could trigger outbreaks that would be difficult or impossible to control. Historically, new strains of influenza, once they establish transmission in the human population, have infected a quarter or more of the world’s population within two years. 

For any experiment, the expected net benefits should outweigh the risks. Experiments involving the creation of potential pandemic pathogens should be curtailed until there has been a quantitative, objective and credible assessment of the risks, potential benefits, and opportunities for risk mitigation, as well as comparison against safer experimental approaches. A modern version of the Asilomar process, which engaged scientists in proposing rules to manage research on recombinant DNA, could be a starting point to identify the best approaches to achieve the global public health goals of defeating pandemic disease and assuring the highest level of safety. Whenever possible, safer approaches should be pursued in preference to any approach that risks an accidental pandemic. 
The field of molecular biology previously confronted a scenario where the development of new technologies outpaced a thorough assessment of their potential risks. In a 1974 statement from a committee of the National Academy of Sciences that considered then-emerging recombinant DNA experiments, the concerns expressed about that technology are similar to the current responses to PPP experiments, although today’s concerns apply to the possible enhancement of already known pathogens. That 1974 report stated:
Several groups of scientists are now planning to use this technology to create recombinant DNAs from a variety of other viral, animal, and bacterial sources. Although such experiments are likely to facilitate the solution of important theoretical and practical biological problems, they would also result in the creation of novel types of infectious DNA elements whose biological properties cannot be completely predicted in advance. 
The new CWG call for an Asilomar-type approach to evaluating and managing the risks of PPP experiments references the foundational 1975 Asilomar conference called by scientists to deliberate how recombinant DNA experiments could be safety performed. That conference established principles for conducting the new recombinant DNA experiments, leading to the issuance of the 1976 Guidelines by the newly formed Recombinant DNA Advisory Committee (RAC) (see recent post on RAC’s future). It is important to note that there is disagreement within the scientific community regarding the need for GOF influenza (PPP) experiments; see here for a brief on the value of such work and here for a critical take on such research. The call for further investigation of PPP research by the scientific community echoes the approach of Asilomar, but it also serves as a notice to regulatory authorities (e.g., funding agencies) that the scientific community is aware of public concerns and is responding with deliberation. Professional self-regulation could preempt government-initiated controls on PPP research, such as funding restrictions.

No comments: